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Models of open inflation with a variable density parameter V provide the most
natural way to reconcile an open universe with inflation. The use of the anthropic
principle is essential to derive observational predictions of such models. I discuss
how this principle can be used in a quantitative way to determine the most
probable value of V . Application to more general models of eternal inflation is
also briefly discussed.

1. INTRODUCTION

Until recently, thinking about open universes was regarded as a waste

of time because inflation predicted a flat universe. And thinking about the

anthropic principle could get you into real trouble. The situation is now

changing for open universes, as observations point to low values of the matter

density. To meet this observational challenge, new models of inflation have

been developed [1±4] in which the density parameter V can take a wide
spectrum of values.

I think the bad reputation of the anthropic principle is also largely

undeserved. If indeed we live in an open universe, then it is hard to explain

the observed value of V without using the anthropic principle. The same

applies to a universe with a nonzero cosmological constant. Here I show
how the anthropic principle can be used in a quantitative way to determine

the probability distribution for V . I first give an overview of open inflation

in Section 2. Then, in Section 3, I introduce my favorite version of the

anthropic principle, which I call the ª principle of mediocrity.º In Section 4

this principle is applied to open inflation to obtain the probability distribution
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for V . In Section 5, I argue that observers should not be surprised to find

themselves living at an epoch when the curvature is about to dominate.

Finally, in Section 6, I discuss how the principle of mediocrity can be applied
to a more general class of models of eternal inflation.

2. OPEN INFLATION

2.1. One-Field Model

The simplest model of open inflation [2, 3 ] assumes a scalar field f
with a potential V( f ) of a rather special form. This potential is assumed to

have a metastable false vacuum separated by a barrier from a flat, slow-roll

region leading to the true vacuum. The first stage of inflation occurs when

the field f is stuck in the false vacuum. Occasionally f tunnels through the

barrier with the formation of a bubble. Then f slowly rolls toward the true

minimum of the potential, resulting in a second stage of inflation inside
the bubble.

The process of bubble nucleation is described [5 ] by a compact, O(4)-

invariant instanton which is a solution of Euclidean field equations. The

nucleation probability is 3 , e 2 SE, where SE is the Euclidean action of the

instanton. The evolution of a bubble after nucleation is obtained by analyti-

cally continuing the instanton to Lorentzian signature. It can be shown [5 ]
that the bubble interior is isometric to an open Robertson±Walker universe.

The homogeneity and isotropy of the bubble spacetime are ensured by the

high symmetry of the instanton. Hence, in this case the horizon problem is

solved not by a large amount of inflation, but by the symmetry of the bubble

nucleation process.
In the space between bubbles, the rate of expansion is very high, and

bubble collisions are very rare. We can therefore think of the bubbles as

isolated open universes. All of these universes have the same value of V ,

which is determined by the number of e-foldings of slow-roll inflation, N.

For observationally interesting values of V we need N ’ 60.

This simple model demonstrates that inflation can indeed be reconciled
with a low-density universe, but it requires a substantial amount of fine

tuning. The potential V( f ) is required to have a sharp barrier next to a flat,

slow-roll region, which is a rather unnatural combination.

2.2. Two-Field Model

A more natural model, introduced by Linde and Mezhlumian [4 ], has

two fields, s and f , with s doing the tunneling and f the slow roll. The

potential has the form
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V( s , f ) 5 V 0( s ) 1
1

2
g s 2 f 2 (1)

where V 0( s ) has a metastable false vacuum at s 5 0 and the true vacuum

at s 5 s 0. When s is in the false vacuum, the field f is massless, while in

the true vacuum it has a mass

m 5 g1/2 s 0 (2)

A massless scalar field in an inflating universe is subject to quantum fluctua-

tions, which can be pictured as a random walk along the f axis. After a

while, all values of f become equally probable.

In this model bubbles can nucleate at different values of f . The nucleation

probability is

3 , e 2 SE( f ) (3)

The number of e-foldings of the slow-roll inflation inside the bubbles is also

f -dependent,

N( f ) ’ 2 p G f 2 (4)

Hence, one expects to have a distribution of bubbles with different values
of V [4].

However, recent analysis by Garcia-Bellido et al. [6] has shown that

this picture is oversimplified. The field f is not homogeneous inside the

bubbles. The reason is that the bubbles expand into the region of fluctuating

field f , and the fluctuations penetrate through the bubble wall. Mathemati-
cally, this is described by the so-called supercurvature modes. Let us denote

by t s the time it takes the field s to settle to its true minimum at s 0 (here,

t is the Robertson±Walker time inside a bubble). Then, on constant-time

surfaces t , t s , f has a Gaussian distribution

3 ( f ) } exp ( f 2/2 ^ f 2 & ) (5)

with a dispersion [6 ]

^ f 2 & , m 2 2 R 2 4
0 (6)

Here, R 0 is the bubble radius at the time of nucleation. The distribution (5)

is actually the same as that in Eq. (3), but their meanings are completely

different. Equation (3) gives the probability that a bubble nucleates with a
given value of f , while (5) gives the probability distribution for f inside a

single bubble.

Only regions where f is greater than the Planck mass mp are going to

inflate, and the amount of inflation will differ from one region to another,

according to Eq. (4). Hence, each bubble will contain an infinite number of
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regions with different values of V . Garcia-Bellido et al. called this picture

ª quasiopen inflation.º

The correlation length of f inside the bubbles at t , t s is j , Rc /
H2

F m2 R4
0, where HF is the expansion rate in the false vacuum and Rc is the

curvature radius of the hypersurfaces t , t s . This correlation length sets the

length scale of variation of V and must be much greater than the comoving

size of the presently observable universe (by a factor of at least 107, in order

that the microwave background anisotropies do not get unacceptably large).

This can be enforced by a suitable choice of parameters in the potential (1).
Clearly, in this type of model, the value of V cannot be predicted with

certainty. One can only try to determine the probability distribution for V .

3. PRINCIPLE OF MEDIOCRITY

Each of the bubbles will be inhabited by an infinite number of civiliza-

tions which will generally measure different values of V . In some regions

V will be too low for any galaxies to form. The probability for measuring

such values of V should be set equal to zero, since there will be nobody
there to observe them. When people talk about the anthropic principle, they

usually mean this anthropic constraint (see, e.g., ref. 7). However, I suggest

that we use a much more quantitative version [8 ].

My suggestion is that the probability 3( V )d V for V to be in the interval

d V should be set proportional to the number of civilizations which will
measure V in that interval. Assuming that we are a typical civilization, we

can expect to observe a value of V near the maximum of 3( V ). This version

of the anthropic principle, which I called the principle of mediocrity [8 ], is

an extension of the Copernican principle. The Copernican principle asserts

that our position in space is not special, while the principle of mediocrity

asserts that the values of the cosmological parameters we are going to measure
are not special either.2

In order to apply the principle of mediocrity to our models, we will

have to compare the number of civilizations in parts of the universe with

different values of V . Of course, we cannot calculate the number of civiliza-

tions. However, since the value of V does not affect the physical processes

involved in the evolution of life, this number must be proportiona l to the
number of habitable stars or, as a rough approximation, to the number of

galaxies. Hence, we shall set the probability for us to observe a certain value

of V to be proportional to the number of galaxies formed in parts of the

universe where V takes the specified value.

2 A very similar approach was used by Carter [9], Leslie [9 ], and Gott [11 ] to estimate the
expected lifetime of our species. Gott also applied it to estimate the lifetimes of various
political and economic structures, including the journal Nature where his article was published.
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The principle of mediocrity was applied to calculate the probability

distribution for V in an earlier paper [12], which assumed the old picture of

homogeneous open universes inside bubbles. A serious difficulty encountered
in that calculation was that open universes inside the bubbles have infinite

volume and contain an infinite number of galaxies. Thus, to find the relative

probability for different values of V , one had to compare infinities, which

is an inherently ambiguous task. This problem was addressed in ref. 12 by

introducing a cutoff and counting only galaxies formed prior to the cutoff.

Although the cutoff procedure employed in ref. 12 has some nice properties,
it is not unique, and the resulting probability distribution is sensitive to the

choice of cutoff [13 ]. This cutoff dependence, which also appears in other

models of eternal inflation [13, 14 ], has led some authors to doubt that a

meaningful definition of probabilities in such models is even in principle

possible [13, 15 ].

However, this pessimistic conclusion may have been premature.
According to the quasiopen picture, V takes all its possible values within

each bubble. Since all bubbles are statistically equivalent, it is sufficient to

consider a single bubble. Moreover, we can restrict ourselves to a finite (but

very large) comoving volume within that bubble, provided that its size is

much greater than the characteristic scale of variation of V . Thus, we no
longer need to compare infinities, and the problem becomes well defined.

In the next two sections I shall report on a recent paper I wrote with

Jaume Garriga and Takahiro Tanaka [16] where we extend the work of ref.

12 in two important respects. First, we use the quasiopen picture (which

actually makes the calculation much simpler) and second, we give a much

more careful treatment of the astrophysical aspects of galaxy formation.
The principle of mediocrity has also been applied to other cosmological

parameters, e.g., the cosmological constant [17±19 ] and the amplitude of

density fluctuations [20].

4. CALCULATION OF 3( V )

A great simplification introduced by the quasiopen picture is that V takes
all its possible values within each bubble. Since all bubbles are statistically

equivalent, it is sufficient to calculate 3( V ) for a single bubble.

The distribution 3( V ) can be expressed as

3( V ) } 3( f )e3N( f ) n ( V ) Z d f
d V Z (7)

Here, 3( f ) is the probability distribution for f , Eq. (5), and the next factor

accounts for the fact that regions starting out with different values of f will
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inflate by a different amount; e3N( f ) is the volume enhancement factor. The

ª anthropic factorº n ( V ) is proportional to the number of galaxies formed per

unit volume. More precisely, it is the fraction of galactic-scale volumes which
eventually collapse to form galaxies. Finally, the last factor in (7) is the

Jacobian transforming from f to V via the relation [2 ]

H2

*
e2N( f ) ’

T 2

*
TeqTCMB

V
1 2 V

(8)

Here, H* and T* are the expansion rate and the temperature at the end of

inflation, Teq is the temperature at equal matter and radiation densities, and
TCMB is the temperature at the time when the value of V is specified.

The Gaussian distribution 3( f ) is peaked at f 5 0, which corresponds

to V 5 0, while the volume factor favors large values of f and pushes V
toward V 5 1. The effect of n ( V ) can be understood if we note that the

growth of density fluctuations in an open universe terminates at a redshift 1

1 z , V 2 1. If V is too low, galaxy formation is suppressed. Hence, n ( V )
® 0 as V ® 0.

An interesting situation arises when 3( f ) dominates over the volume

factor. In this case, the effect of the anthropic factor n ( V ) is to shift the peak

of the distribution from V 5 0 to a nonzero value of V .

In order to calculate n ( V ), one needs to make some assumptions about
the nature of cosmological density fluctuations. We shall assume Gaussian

fluctuations characterized by a dispersion s rec on the comoving galactic scale

at the time of recombination. The choice of reference time here is unimportant,

as long as it is much earlier than the time of curvature domination, so that

one can reasonably assume that s rec is independent of V . For the galactic

scale we choose the comoving scale of 1 Mpc at present.
In an open universe with a density parameter V rec at trec, the dispersion

of density fluctuation in the asymptotic future, s ` , is greater than s rec only

by a finite factor,

s `

s rec

5
5

2

V rec

1 2 V rec

5
5

2

Trec

TCMB

V
1 2 V

(9)

where in the last step I used the fact that

T(1 2 V )/ V 5 const (1 0)

during the matter era. We can now use the Press±Schechter formalism to
determine n ( V ). Galaxies will form in regions where the linearized density

contrast d exceeds the critical value d c ’ 1.7. Hence, n ( V ) is given by

the integral of the Gaussian distribution over d . d c , that is, by the error

function [21]
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n ( V ) 5 erfc 1 d c

! 2 s ` 2 5 erfc 1 k 1 2 V
V 2 (11)

where

k 5
2

5

TCMB

Trec

d c

! 2 s rec

(12)

In principle, the value of s rec can be determined from the fundamental

theory of density fluctuations. Until such theory is known, we can, in practice,
adjust s rec to fit the CMB observations. Our ability to do so is limited,

however, by the fact that the value of s rec inferred from observations depends

on the Hubble ª constantº H 0 and the density parameter V 0 in our part of the

universe, which are not very well determined. With this uncertainty [16 ],

k 5 0.1 6 0.05 (13)

Combining Eqs. (5)±(8) and (11), we can now write the final form of

the probability distribution for V ,

d3

dlny
} y3( m 2 1/2) erfc( y) (14)

Here,

y 5 k
1 2 V

V
(15)

and

m 5
m2

p

24 p ^ f 2 &
, m2

p m2 R4
0 (16)

Note that the variable y defined in (15) does not depend on the temperature

TCMB at which V is measured, because of Eq. (1 0).

For y . 1, the error function can be approximated as

erfc( y) ’
1

! 2y
e 2 y2

(17)

and the value of V at the peak of the distribution (14) can be expressed
analytically,

k 1 1 2 V
V 2 peak

’ 1 32 m 2
5

4 2
1/2

(18)

The peak is rather broad, with a width
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D 1 1 2 V
V 2 , 5 (19)

Interesting values of V peak, which are not too close to either 0 or 1, are

obtained in models with m , 1 (which can be easily constructed). Further

details of the calculations and the results can be found in ref. 16.

The moral of this analysis is that, given a particle physics model, the
probability distribution for V can be unambiguously calculated from first

principles.

5. THE COSMIC AGE COINCIDENCE

The usual objection against models with V , 1 is that it is hard to

explain why we happen to live at the epoch when the curvature is about to

dominate. That is, why

t0 , tc (2 0)

where t 0 is the present time and tc is the time of curvature domination.

Observers at t , , tc would find V ’ 1, while observers at t . . tc would

find V , , 1. It appears that one needs to be lucky to live at a time when

V differs substantially from both 0 and 1. Here I am going to argue that the

coincidence (2 0) is not as surprising as it may first seem [16 ].
From the analysis in the preceding section, we can expect to have

tc , tG (21)

where tG is the time of galaxy formation. Without the anthropic factor n ( V ),

the probability distribution for V is peaked at V 5 0, which corresponds to
tc ® 0. The role of n ( V ) is to push the peak to values of V such that the

curvature domination occurs soon after galaxies are formed, so that tc , tG.

Recall Dicke’ s observation [22] that the present time t0 is likely to be

comparable to the lifetime of a typical main sequence star, t0 , t, , 101 0

years. Moreover, observationally the epoch of structure formation, when giant

galaxies were assembled, is at zG , 1±3, or tG , 109±101 0 years. Since, tG

, t, , t0, it follows from (21) that tc , t0.

The above argument is based on the coincidence

tG , t, (22)

which cannot be explained in the framework of our model. The time of
galaxy formation tG depends on the amplitude of the cosmological density

fluctuations, while the stellar lifetime t, is determined by the fundamental

constants. In our model, the only variable is tc , while tG and t, remain fixed.

It is conceivable that the coincidence (22) may find some kind of anthropic
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explanation in more general models where some other ª constantsº are allowed

to vary.

6. MORE GENERAL MODELS

The approach to calculating probabilities outlined in Sections 3 and 4

can be extended to more general models in which ª constants of natureº and

cosmological parameters other than V can take different values in different

parts of the universe. Let us consider models with a single inflaton field f
and a potential V( f ) having no false vacua. (Such models predict V ’ 1.)
A remarkable property of inflation is that generically it never ends in the

entire universe. The evolution of the inflaton field f is influenced by quantum

fluctuation, and as a result thermalization does not occur simultaneously in

different parts of the universe. The dynamics of f can be pictured as a random

walk superimposed on the classical slow roll. On small scales, the fluctuations

in the thermalization time give rise to a spectrum of small density fluctuations,
but on large scales they make the universe extremely inhomogeneous. In

most of the models one finds that at any time there are parts of the universe

that are still inflating and that the total volume of the inflating regions is

growing with time. This picture is often referred to as ª stochastic inflationº

or ª eternal inflationº [23, 24 ].

Eternally inflating universes may contain thermalized regions character-
ized by different values of the constants of nature and of the cosmological

parameters. For example, the inflaton potential V( f ) may have several minima

corresponding to different low-energy physics or to different values of the

cosmological constant. A more interesting possibility is that the ª constantsº

are related to some slowly varying fields and take values in a continuous
range. Just like the inflaton field f , the fields x j ( j 5 1, . . . , n) associated

with the ª constantsº are subject to quantum fluctuations during inflation,

and different regions of the universe thermalize with different values of x j.

According to the principle of mediocrity, the probability 3( x )d n x for x j to

be in the intervals d x j is proportional to the number of civilizations which

will measure x j in that interval.
As before, the problem of calculating 3( x ) can be split into two parts.

The probability for us to observe certain values of x j is proportiona l to the

volume of the regions where x j take specified values and to the density of

galaxies in those regions. It is convenient to consider comoving regions and

measure their volume at the time of thermalization. Then we can write

3( x ) } n ( x ) 3
*
(d x ) (23)

Here, 3
*
( x ) d n x is proportional to the volume of thermalized regions where
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x j take values in the intervals d x j , and n ( x ) is the number of galaxies that

form per unit thermalized volume.

The factor 3*( x ) in Eq. (1) is the probability distribution of the fields
x j on the thermalization hypersurface S * which separates inflating and ther-

malized spacetime regions. It is a three-dimensional spacelike surface which

plays the role of the ª big bangº for the thermalized regions. In the case of

several discrete vacua, S * consists of a number of disconnected pieces, each

connected component corresponding to thermalization into a single vacuum.3

Each connected piece of S * has an infinite volume. (The situation here is
similar to open inflation, where thermalized regions inside the bubbles have

the form of infinite, open Robertson±Walker universes). In order to determine

the relative probability of different vacua, one has to compare the infinite

volumes of the corresponding components of S *, which is an inherently

ambiguous task. This is the same ambiguity that we encountered in Section

3 in the case of open inflation.
Now, the key observation [26 ] is that the situation may be greatly

improved in the case of continuous fields x j varying in a finite range, 0 #
x j # D j. In this case, each connected part of S * is still infinite, but now

different parts are not characterized by different values of x j. On the contrary,

x j run over all the range of their values on each connected part. Since the
inflationary dynamics of the fields x j has a stochastic nature, the distributions

of x j on different components of S * should be statistically equivalent. It is

therefore sufficient to consider a single connected component. Moreover,

since x j have a finite range, they will run over all of their values many times

on any sufficiently large part of S *. Hence, there is no need to deal with

infinite hypersurfaces. The probability distribution 3*( x ) can be determined
by examining a large, finite piece of S *.

This argument can be extended to fields with an infinite range of varia-

tion, provided that the probability distributions of x j are concentrated within

a finite range, with a negligible probability of finding x j very far away from

that range.

Models with a finite range of x j are not difficult to construct. For
example, x j , could play the role of angular variables, with the inflaton field

f being the radial variable in the field space. Another attractive possibility

is a s -model-type theory in which both x j and f take values on a compact

manifold. Some examples are given in ref. 26.
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